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Receptivity of the compressible mixing layer
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Receptivity of compressible mixing layers to general source distributions is examined
by a combined theoretical/computational approach. The properties of solutions to the
adjoint Navier–Stokes equations are exploited to derive expressions for receptivity
in terms of the local value of the adjoint solution. The result is a description of
receptivity for arbitrary small-amplitude mass, momentum, and heat sources in the
vicinity of a mixing-layer flow, including the edge-scattering effects due to the presence
of a splitter plate of finite width. The adjoint solutions are examined in detail for a
Mach 1.2 mixing-layer flow. The near field of the adjoint solution reveals regions of
relatively high receptivity to direct forcing within the mixing layer, with receptivity
to nearby acoustic sources depending on the source type and position. Receptivity
‘nodes’ are present at certain locations near the splitter plate edge where the flow
is not sensitive to forcing. The presence of the nodes is explained by interpretation
of the adjoint solution as the superposition of incident and scattered fields. The
adjoint solution within the boundary layer upstream of the splitter-plate trailing edge
reveals a mechanism for transfer of energy from boundary-layer stability modes to
Kelvin–Helmholtz modes. Extension of the adjoint solution to the far field using a
Kirchhoff surface gives the receptivity of the mixing layer to incident sound from
distant sources.

1. Introduction
Receptivity is the process by which external disturbances excite instabilities within a

shear flow. The study of receptivity may be divided into two broad classes: receptivity
of boundary-layer flows, and receptivity of free shear flows. The importance of
receptivity in the study of boundary-layer transition has been recognized for some
time. The genesis of various boundary-layer instabilities which lead to transition
is described by the receptivity of the flow to environmental disturbances, surface
roughness, or actuation of engineering devices. The area of free shear-layer receptivity
has received somewhat less attention recently, although it is of critical importance to
the study of shear-flow control and modelling of self-resonant flows. As pointed out by
Crighton (1985), active control of the fully developed turbulent field in the downstream
jet or mixing layer seems impracticable, but control via manipulation of the linear
instabilities of the early shear layer may be possible; a theoretical exploration of
this idea was made by Ffowcs Williams (2001). Experimental efforts aimed at free
shear-flow control using high-frequency and/or high-amplitude actuation (Wiltse &
Glezer 1998; Stanek et al. 2000; Raman & Kibens 2001) are currently in search of
a theory to support the main results. Response of the early mixing layer in these
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Figure 1. Schematic of the mixing-layer receptivity problem.

flows, if not primarily responsible for the control effects, must be well-understood for
proper interpretation of the results.

The present paper examines receptivity in a compressible mixing layer. Laboratory
experiments on mixing-layer receptivity present numerous difficulties, most notably
the inevitable presence of unwanted environmental noise sources in the wind tunnel
which may obscure the mechanisms of interest and cause significant facility-to-facility
variation in results (Dziomba & Fiedler 1985). The careful numerical treatment
explored in this work allows more control over noise and ‘experimental’ conditions,
giving a cleaner picture of the receptivity process. Figure 1 shows a schematic of the
present computational model problem. A thin rigid splitter plate separates two co-
flowing laminar streams of a compressible gas. The splitter plate extends indefinitely
in the upstream direction, but terminates at x = 0, creating a free mixing-layer flow
downstream. At sufficiently high Reynolds number, the initial mixing layer supports at
least one Kelvin–Helmholtz inviscid instability mode. The general receptivity problem
considers the response of the mixing layer to incident unsteady disturbances generated
by sources of mass, momentum, or heat. For small perturbations to the base flow, the
Kelvin–Helmholtz instability is excited over some region downstream of the trailing
edge, and it grows in the downstream direction until the point where nonlinear effects
become important. The excited mixing layer just described is ubiquitous in flows of
engineering interest, including resonant flows such as the cavity and the screeching
jet.

1.1. Previous work on receptivity of free shear flows

Experimental study of the excitation mechanisms occurring in free shear flows dates
back at least as far as the work of Brown (1935), who used smoke visualization
techniques to determine that a low-speed jet of air is only sensitive to excitation
by sound near the jet exhaust orifice. The advent of linear stability theory led
to later experiments on the behaviour of the forced initial shear layer aimed at
testing the theoretical predictions. These experiments, and many others (reviewed
by Ho & Huerre 1984), focused on the downstream evolution of the shear layer
and validation of growth-rate predictions rather than the mechanism for initial
instability wave excitation. Over thirty-five years after Brown’s observations on
receptivity, Morkovin & Paranjape (1971) were the first to demonstrate quantitatively
the dominance of a near-edge mechanism in the acoustic excitation of jets. They found
that receptivity correlated well with the strength of the acoustic pressure gradient
normal to the jet axis near the nozzle lip.
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A consistent mathematical model for mixing-layer receptivity was first introduced
by Jones & Morgan (1972), who considered the problem of a time-harmonic acoustic
line source placed near a subsonic stream separated from still air by a vortex sheet
of infinite extent. They found that the solution must include a Kelvin–Helmholtz
instability wave component that grows exponentially in the downstream direction in
order to satisfy causality. In a subsequent paper, Jones & Morgan (1973) presented a
similar analysis for the case of a supersonic stream. Crighton & Leppington (1974)
considered the problem of a vortex sheet attached to a rigid half-plane separating
still air from a subsonic stream. Using the Wiener–Hopf technique (Noble 1958), they
solved for the time-asymptotic mixing-layer response to excitation by a harmonic
line source as well as the response to a pulse disturbance. Morgan (1974) considered
essentially the same problem, but also treated the supersonic flow case, while Munt
(1977) applied a similar model to the round jet configuration. The emphasis of
these original vortex-sheet models was placed on the resulting sound field, although
expressions were given for the excited instability wave component as residues of a
Fourier inversion integral. Of central importance to prediction of receptivity by the
models is the unsteady Kutta condition, which represents the action of viscosity near
the splitter-plate trailing edge and ensures finite velocities in this region. The validity
of the Kutta condition as a physical model of viscous processes near the trailing edge
remained in question until detailed analysis of the near-edge region using triple-deck
theory (Daniels 1977; Crighton 1985; Peake 1994).

Various other researchers have employed the vortex-sheet model to investigate
receptivity of mixing layers and jets. Bechert (1988) reformulated the vortex-sheet
problem for the incompressible splitter-plate flow and derived a simple formula for
the amplitude of the excited instability wave as a function of the unsteady pressure
difference across the splitter plate. In a companion paper, Bechert & Stahl (1988)
compared the theoretical predictions of receptivity to carefully controlled experiments,
and determined that the vortex-sheet model was valid for Strouhal numbers based
on the shear-layer momentum thickness and free-stream velocity of less than about
0.005 (compared with the entire unstable range of Strouhal numbers between zero
and 0.04). Kerschen (1996) used the vortex-sheet model to investigate receptivity of
compressible shear layers as a function of source location. He found that excitation
by sources on the splitter plate adjacent to the flow was more efficient than excitation
from the side adjacent to the quiescent fluid. He also found that the receptivity level
decreased exponentially with distance from the trailing edge for downstream sources,
while for actuators placed on the splitter plate, the receptivity decreased algebraically
with distance from the trailing edge. Pal (1996) solved the receptivity problem for a
supersonic cylindrical jet with a ring-shaped acoustic source coincident with the vortex
sheet surface downstream of the nozzle lip. Bower & Pal (1996) presented results using
Pal’s model for heated and unheated jets, and reported a general increase in receptivity
levels with increasing jet temperature relative to the ambient air.

However, the vortex-sheet model suffers from its simplistic description of the
shear layer as a discontinuity between two uniform flow regions. The result of this
approximation is a restriction to a band of low frequencies that spans only a small
range of the unstable frequencies for a shear layer of finite width. There have been
several efforts to develop a receptivity theory that is valid for any temporal frequency.
Tam (1978) constructed a theory for the receptivity of a finite-width parallel free shear
layer subjected to incident acoustic wave radiation. The Green’s function for excitation
from the quiescent side of the shear layer is found using transform techniques, and
the linear response of the flow is then constructed using the Green’s function. The
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excited instability wave component is isolated by evaluation of a residue present in
the Fourier inversion integral. Tam gave only limited receptivity predictions from his
model, but did demonstrate that when the excitation field is given by a beam of
sound, the receptivity increased with decreasing beam width. This is a consequence
of the wavenumber matching principle (Tam 1986), which states that some portion
of both the temporal frequency and spatial scale of the excitation must match that of
the instability wave for coupling to occur. Tam’s model was applied as the initial
part of a quasi-linear model of tone excited jets in Tam & Morris (1985), giving
reasonable results for the initial amplitude of the forced instability wave. However,
the absence of explicit edge-scattering effects in the model raises questions regarding
its applicability for flow geometries containing a scattering surface.

Further theoretical descriptions of finite-width mixing-layer receptivity include the
work of Huerre & Monkewitz (1985), who found the response to a point source
placed in a parallel, incompressible mixing layer by solving the initial-value problem
using transform techniques. Subsequently, Balsa (1988) studied the receptivity of
an incompressible free shear layer to excitation by a dipole source using a wave
packet analysis. The velocity profile in this study was piecewise linear in order
to facilitate evaluation of certain inversion contour integrals. Balsa found that the
receptivity increased roughly exponentially with frequency, and that the flow was
most sensitive to forcing near the centreline of the shear layer, with a slight bias
towards the low-speed side of the layer. The receptivity was also found to be roughly
proportional to the velocity difference across the shear layer. Similar conclusions
were made regarding the receptivity to perturbations formed from a small oscillating
cylinder placed within an incompressible shear layer (Balsa 1993). An attempt to
combine a finite-thickness theory for receptivity of Kelvin–Helmholtz instabilities
including edge effects was made by Rabchuk (2000), who considered the receptivity
of a piecewise linear mixing layer to a point vorticity source placed at the edge of a
thin splitter plate. Rabchuk’s model sacrifices consistency with a real near-edge flow
by assuming a parallel wake/shear layer extending both up- and downstream of the
edge. Nevertheless, his model provides useful qualitative information on the response
of a low-speed mixing layer across the entire unstable frequency range. Observations
include the importance of non-modal and damped-wave components of the solution
near the edge, and an increase in receptivity of unstable modes near the neutral
frequency.

1.2. Receptivity prediction using adjoint solutions

The role of adjoint solutions in linear stability analysis has been recognized at least
since the work of Ling & Reynolds (1973) and Saric & Nayfeh (1975), who used the
adjoint as part of a solvability condition to compute eigenfunctions of the non-parallel
boundary-layer. Adjoint formalism was applied by Tumin & Fedorov (1983, 1984) to
investigate the forced response of boundary-layer instabilities to surface vibration. Hill
(1995) built upon this approach to the receptivity problem by emphasizing the adjoint
eigenfunctions as direct indicators of receptivity. Hill calculated the response to forcing
of a parallel, incompressible boundary-layer flow by finding the regular and adjoint
eigenfunctions of the Orr–Sommerfeld operator, then applying the biorthogonality
property of regular and adjoint modes (Salwen & Grosch 1981) to solve for the
amplitude of the excited eigenmode. He also showed that the adjoint-based formula
for receptivity is equivalent to the formula derived by Huerre & Monkewitz (1985)
for receptivity of a two-dimensional shear layer.
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The adjoint approach leads to relatively easy calculation of the receptivity to
sources of different types, frequencies and locations, allowing for rapid coverage
of the parameter space. Furthermore, in contrast to previous analytical work on
receptivity, the mathematical results (in the form of the adjoint eigenfunctions) give
the receptivity directly, facilitating physical interpretation of the results. The adjoint
approach was extended to non-parallel incompressible boundary-layer flows by Hill
(1997), Dobrinsky & Collis (2000) and Airiau (2000). Luchini & Bottaro (1998)
recognized that the adjoint operator could be used to compute amplitudes of modes
that only posess a distinctive propagative behaviour well-downstream of the excitation
location. They applied adjoint solutions of the boundary-layer equations to compute
receptivity of Görtler vortices.

Application of adjoint methods to free shear flows has been somewhat limited;
Suzuki (2001) applied the adjoint approach in calculating the instability wave
component of the Green’s function for an inviscid, compressible free shear layer,
but considered only a single set of flow and excitation conditions. In a related
application to jet aeroacoustics, Tam & Aurialt (1998) applied adjoint solutions to
study mean flow refraction of sound through a jet shear layer.

We build on the adjoint approach to receptivity prediction by considering its
application to the mixing layer with the splitter plate present. The inhomogeneity
introduced by the splitter plate complicates a purely theoretical treatment, but the
appropriate adjoint problem may still be formulated and solved computationally.
This results in solution of an adjoint scattering problem; the incident and scattered
adjoint fields each have direct physical interpretations relating to receptivity of the
flow. Furthermore, the analysis is only constrained by the assumption of linearity,
and is not restricted to particular frequency bands or to certain limits of the flow
parameters.

The following section gives the theoretical basis for the adjoint approach to
receptivity prediction. The governing equations are presented, including the adjoint
equations. The primary result of the analysis is an expression for the receptivity of
a particular instability mode in terms of an adjoint solution and an arbitrary source
distribution. Section 3 begins with a brief explanation of the numerical techniques
employed to solve the adjoint equations and then examines, in detail, the receptivity
of a supersonic mixing layer. The final section of the paper offers some conclusions
regarding the present work.

2. Receptivity prediction using adjoint equations
2.1. The regular governing equations

Consider a nominally steady mixing-layer flow that is perturbed by a source generating
small-amplitude disturbances. A general flow variable χ is represented by the sum
of a steady mean value χ̄ and a fluctuating component χ̃ . Substitution of this form
into the Navier–Stokes equations for compressible flow and subsequent linearization
in the fluctuating terms yield the linearized Navier–Stokes equations (LNS) in non-
dimensional form:

∂ρ̃

∂t
+ ūk

∂ρ̃

∂xk

+ ρ̄
∂ũk

∂xk

+ ũk

∂ρ̄

∂xk

+ ρ̃
∂ūk

∂xk

= s̃ρ, (2.1)

∂ũi

∂t
+ ūk

∂ũi

∂xk

+

(
ũk +

ρ̃

ρ̄
ūk

)
∂ūi

∂xk

+
1

ρ̄

∂p̃

∂xi

=
M1

ρ̄Re

∂τ̃ik

∂xk

+ s̃ui
, (2.2)
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∂T̃

∂t
+ ūk

∂T̃

∂xk

+

(
ũk +

ρ̃

ρ̄
ūk

)
∂T̄

∂xk

+
γ

ρ̄

[
p̄

∂ũk

∂xk

+ p̃
∂ūk

∂xk

]

=
γM1

ρ̄Re
Φ̃ − γM1

ρ̄ReP r

∂q̃k

∂xk

+ s̃T . (2.3)

The fluid velocity vector is given by ui , while the thermodynamic state is described by
the pressure p, density ρ and temperature T . The forms for the linear viscous stress
tensor τ̃ik , heat flux q̃i , and the irreversible linear dissipation term Φ̃ are given in the
Appendix. The linearized form of the ideal gas law, also given in the Appendix, closes
the equations. The length, velocity and time scales used for non-dimensionalization are
the fast-stream boundary-layer momentum thickness θ∗

1 , the isentropic speed of sound
c∗

1, and the ratio θ∗
1 /c∗

1, respectively. Density is non-dimensionalized by the reference
quantity ρ∗

1 , pressure by ρ∗
1c

∗2

1 , and temperature by (γ − 1)T ∗
1 . Non-dimensional

parameters appearing in (2.1)–(2.3) are the fast stream Mach number M1, the Reynolds
number Re = ρ∗

1u
∗
1θ

∗
1 /µ∗

1, the Prandtl number Pr = µ∗
1Cp/k∗

1 and the ratio of specific
heats γ = Cp/Cv . The viscosity µ is related to temperature using the power law
relationship µ(T ) = ((γ − 1)T )2/3, which is valid for moderate temperatures.

The terms s̃ρ , s̃ui
and s̃T , added to the right-hand sides of the equations, represent

the presence of small-amplitude externally applied sources. The rate of volumetric
mass addition is s̃ρ , while the rate of volumetric heat addition per unit mass is s̃T .
The term s̃ui

represents a body-force distribution; multiplying by the mean density ρ̄

transforms s̃ui
to a linear momentum source. These source terms are one mechanism

for providing the input excitation in the receptivity analysis to follow. We note that
the present source terms are simply related to source terms implied in the original
nonlinear equations.

Equations (2.1)–(2.3) may be written in compact vector notation,

∂Ũ
∂t

+ L(Ũ) = s̃, (2.4)

where, in two dimensions,

Ũ(x, t) = [ρ̃ ũ ṽ T̃ ]T , s̃(x, t) = [s̃ρ s̃u s̃v s̃T ]T . (2.5)

2.2. Adjoint equations and the Euler–Lagrange identity

The adjoint equations are derived by taking the dot product of a smooth vector field
V †(x, t) and (2.4). After repeated application of integration by parts, we are left with
the following relation, called the Euler–Lagrange identity:

Ũ ·
(

∂V †

∂t
+ L†(V †)

)
+ V † · s̃ =

∂

∂t
�(Ũ, V †) + ∇ · J(Ũ, V †). (2.6)

At this point V †(x, t) is identified as the adjoint field, and ∂V †/∂t + L†(V †) = 0 is
defined as the system of homogenous adjoint equations that govern the behaviour of
V †. The quantities J and � will be defined in due course. The elements of V † in two
dimensions are labelled as follows,

V † = [ρ† u† v† T †]T , (2.7)

although the adjoint variables have quite different physical meanings from their
regular counterparts. For convenience, we also introduce an adjoint ‘pressure’, defined
as

p† = ρ̄
(
ρ† + c̄2T †) . (2.8)
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The homogenous adjoint equations written out in full are

∂ρ†

∂t
+ ūk

∂ρ†

∂xk

− ūk

∂ūi

∂xk

u
†
i +

γ − 1

γ
T̄

∂u
†
k

∂xk

−
[
ūk

∂T̄

∂xk

+ (γ − 1)T̄
∂ūk

∂xk

]
T † = 0, (2.9)

∂u
†
i

∂t
+ ūk

∂u
†
i

∂xk

− u
†
k

∂ūk

∂xi

+
1

ρ̄

∂p†

∂xi

− ∂T̄

∂xi

T † − ρ†

ρ̄

∂ρ̄

∂xi

=
M1

ρ̄Re

∂τ
†
ik

∂xk

, (2.10)

∂T †

∂t
+ ūk

∂T †

∂xk

+ (γ − 1)

(
1

γ

∂u
†
k

∂xk

− ∂ūk

∂xk

T †
)

=
M1

ρ̄Re
Φ† − γM1

ρ̄ReP r
µ̄

∂2T †

∂x2
k

, (2.11)

where

τ
†
ik = 2γ T †τ̄ik −

(
µ̄

[
∂u

†
i

∂xk

+
∂u

†
k

∂xi

]
+ λ̄

∂u
†
j

∂xj

δik

)
(2.12)

and

Φ† =
∂µ̄

∂T̄

(
∂ūi

∂xk

+
∂ūk

∂xi

)
∂u

†
i

∂xk

+
∂ λ̄

∂T̄

∂ūi

∂xi

∂u
†
k

∂xk

− γ

(
∂ūi

∂xk

[
∂ūi

∂xk

+
∂ūk

∂xi

]
µ† +

[
∂ūk

∂xk

]2

λ†

)
.

(2.13)

Examination of the dissipative terms in (2.10) and (2.11) reveals that the adjoint
equations should be integrated backwards in time in order to maintain well-posedness.

Returning now to the Euler–Lagrange identity (2.6), the right-hand side contains
two terms: a time derivative term, and a divergence term. The scalar variable �

appearing in the time derivative term is given by

�(Ũ, V †) = ρ†ρ̃ + ρ̄u
†
i ũi + ρ̄T †T̃ . (2.14)

J(Ũ, V †), which appears in the divergence term, is called the bilinear concomitant. It
contains weighted sums of products of the elements of Ũ and V † and their spatial
derivatives, with the kth element of J given by

J k = ūk(ρ̃ρ† + ρ̄[u†
i ũi + T̃ T †]) + p̃u

†
k + p†ũk

+
M1

Re

{
−ũiτ

†
ik − u

†
i τ̃ik +

γ

P r

[
µ̄

(
T̃

∂T †

∂xk

− T † ∂T̃

∂xk

)
− ∂µ̄

∂xk

T̃ T †
]}

. (2.15)

2.3. Modal decomposition and biorthogonality

Investigations of the stability of parallel shear flows often introduce a modal
description of the unsteady disturbances. The stability of a particular mode is then
described through specification of its complex wavenumber. Mixing-layer flows at
reasonably high Reynolds number are not parallel, but, far enough downstream from
the near-edge region, the mean flow changes slowly in the streamwise direction relative
to the oscillatory behaviour of the unsteady disturbances of interest. In a real laminar
mixing layer, instabilities eventually grow to large amplitudes and lead to nonlinear
thickening of the layer and transition to turbulence. The present analysis assumes
that there exists a finite region upstream of this nonlinear region where the mean
flow is laminar and not directly influenced by the downstream flow. In this region the
following regular and adjoint disturbance forms may be assumed,

Ũ(x, y, z, t) = Û(x, y) exp(i(ωt − βz)), V †(x, y, z, t) = V̂
†
(x, y) exp(i(ωt − βz)),

(2.16)
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where

Û(x, y) = φ̂(x, y) exp

(
−i

∫ x

xa

α(x ′)dx ′
)

, V̂
†
(x, y) = φ̂

†
(x, y) exp

(
i

∫ x

xb

α†(x ′) dx ′
)

.

(2.17)

The complex wavenumbers in the streamwise and spanwise directions are given by α

and β , respectively, while ω is the given real temporal frequency. The ‘eigenfunctions’

φ̂ and φ̂
†

are required to change slowly in x relative to the variations due to
the exponential factor. We also define the splitting such that α(x) = α†(x) for
regular/adjoint mode pairs. This disturbance form is the basis for derivation of the
parabolized stability equations (PSE), which have been used to predict successfully
streamwise evolution of shear-layer instability modes in non-parallel flows (e.g. Day,
Mansour & Reynolds 2001).

Homogenous regular solutions for a particular ω are written as a combination of
discrete and continuous modes:

Ũ(x, y, t) =

∫ ∞

−∞

[
N(ω)∑
n=1

anφ̂n(x, y) exp

(
i

(
ωt −

∫
αn(x

′) dx ′
))

+

3∑
ν=1

∫ ∞

0

b
(ν)
k φ̂

(ν)

k (x, y) exp

(
i

(
ωt −

∫
α

(ν)
k (x ′) dx ′

))
dk

]
exp(−iβz) dβ. (2.18)

The discrete mode amplitudes are given by an while the amplitude of the kth
continuous mode of the ν branch is b

(ν)
k . For homogenous (s̃ = 0) time harmonic

solutions to the regular and adjoint equations, the Euler–Lagrange identity (2.6)
integrated in the y direction becomes

∂

∂x
[Û, V̂

†
] = 0, (2.19)

with the following inner product definition,

[ f , g] ≡
∫ +∞

−∞
J( f , g) · ex dy. (2.20)

Substitution of (2.17) into (2.19) yields

[Û, V̂
†
] = C[φ̂, φ̂

†
] exp

(
−

∫ x

xa

i∆α(x
′) dx ′

)
= const. (∆α = α − α†) (2.21)

where C = exp(
∫ xa

xb
iα†(x ′) dx ′) is a definite integral that is equal to a constant for

fixed xa and xb. If α = α† then [φ̂, φ̂
†
] equals a constant, since the exponential term

becomes unity. In this case, we choose the normalization constant to be [φ̂, φ̂
†
] = 1

for convenience. If α �= α† then [φ̂, φ̂
†
] must either vary exponentially with x or

equal zero. Since by construction any exponential behaviour of the eigenfunctions

has been explicitly factored out, [φ̂, φ̂
†
] must equal zero. Therefore, the following

biorthogonality relations, derived originally by Salwen & Grosch (1981) for parallel
flow, hold in the weakly non-parallel case as well:

[φ̂n, φ̂
†
m] = δnm (n, m = 1, . . . , N(ω)), (2.22a)

[
φ̂

(ν)

k , φ̂
†
n

]
=

[
φ̂n, φ̂

†(ν)

k

]
= 0 (n = 1, . . . , N(ω), ν = 1, . . . , 3), (2.22b)
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S

Source region

w

Figure 2. Control volume V for integration of the Euler–Lagrange identity. The surface S is
shown displaced from the actual splitter-plate surface for clarity.

[
φ̂

(ν)

k , φ̂
†(µ)

k′

]
= δ(k − k′)δνµ (µ, ν = 1, . . . , 3). (2.22c)

The essential features of this argument are due to Dobrinsky & Collis (2000), who
successfully applied the biorthogonality condition to predict receptivity of weakly
non-parallel incompressible boundary layers.

The spatial modes under consideration may propagate in the downstream (+x)
direction or the upstream (−x) direction depending on whether their group velocity
vg ≡ dω/dα is positive or negative. If vg is positive, then the regular eigenmode
propagates downstream. However, the corresponding adjoint eigenmode propagates
in the upstream direction, i.e. vg = −v†

g (Hill 1995). This is due to the reversed time
dependence of adjoint solutions discussed in § 2.2. If vg < 0, the regular eigenmode
propagates in the upstream direction while the adjoint eigenmode propagates
downstream. Likewise, a regular unstable mode with positive αi ≡ Imag(α) grows in
the downstream direction while the related adjoint instability mode grows upstream.

2.4. Receptivity prediction

We are now in a position to derive an expression for receptivity using adjoint
solutions. This is accomplished by integration of the Euler–Lagrange identity (2.6)
over an appropriate control volume, followed by application of the biorthogonality
properties derived in the previous section.

We begin by substituting a solution to the regular LNS equations (with source
terms) and an adjoint solution into (2.6) and integrating over the control volume V

pictured in figure 2. The cut rectangular control volume chosen extends far upstream
and downstream of any sources, wraps around the splitter plate of width w, and
has upper and lower boundaries that are pushed to y = ±∞. We shall see that the
adjoint instability eigenmode serves as a filter to the forced regular solution, allowing
the extraction of the unstable regular eigenmode amplitude of interest (Hill 1995).
This mathematical property depends, however, on the proper choice of boundary
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conditions for the adjoint problem. We define a particular solution to the adjoint
equations in which the instability eigenfunction (the mth mode) is specified at the
downstream boundary as the only upstream travelling adjoint disturbance. This adjoint
solution consists of the adjoint eigenmode plus scattered waves that result from the
eigenmode impinging on the splitter plate. Its form at the boundaries xa and xb

assumes the following modal decomposition for weakly parallel flow,

V †
f (x, y, t) = φ̂

†
m(x, y) exp

(
i

∫ x

xb

α†
m(x ′) dx ′

)
exp(−i(ωt − βmz))

+

∫ ∞

−∞

[∑
n�=m

a†
nφ̂

†
n(x, y) exp

(
−i

(
ωt −

∫
α†

n(x
′) dx ′

))

+

3∑
ν=1

∫ ∞

0

b
†(ν)

k φ̂
†(ν)

k (x, y) exp

(
−i

(
ωt −

∫
α

†(ν)

k (x ′) dx ′
))

dk

]

× exp(iβz) dβ. (2.23)

The adjoint solution satisfies a radiation boundary condition precluding any modes
propagating from the far field into the domain (as time is reversed), except for the
prescribed instability mode. At xa we only have regular and adjoint modes propagating
upstream,

dω

dα
< 0,

dω

dα† < 0, x = xa. (2.24)

At xb, the only mode propagating upstream is the imposed adjoint instability mode,
giving

dω

dα
> 0,

dω

dα†

∣∣∣∣
n�=m

> 0, x = xb. (2.25)

Substituting Ũ and V †
f into the Euler–Lagrange identity (2.6) and integrating over

the control volume gives

[Û, V̂
†
f ]xb

+

∫ −w/2

−∞
J(Û(xa, y), V̂

†
f (xa, y)) · ex dy +

∫ ∞

w/2

J(Û(xa, y), V̂
†
f (xa, y)) · ex dy

−
∫ xb

xa

J(Û(x, ∞), V̂
†
f (x, ∞)) · ey dx +

∫ xb

xa

J(Û(x, −∞), V̂
†
f (x, −∞)) · ey dx

=

∫
V

ŝ · V̂
†
f dV −

∫
S

J(Û, V̂
†
f ) · n dS, (2.26)

where n is the outward unit normal vector on the splitter plate surface and the last
integral is evaluated along the splitter plate surface in the direction from (−∞, −w/2)
to (−∞, +w/2). In the present treatment, we require quasi-parallel flow conditions
(which are, in general, different) to exist at xa and xb. However, we note that (2.26) is
an exact result for a general non-parallel flow in the region xa < x < xb.

Radiating far-field forms for the regular and adjoint solutions were presented in
Barone (2003). It was shown in Barone (2003) that the upper and lower far-field
integrals in (2.26) are O(|y|−1/2) as y → ±∞ and therefore vanish. For the integrals
over the upstream boundary layers, we define two new inner products identical
to (2.20), except for the range of integration. These new inner products are [ f , g]+

for integration from y = w/2 to ∞ and [ f , g]− for integration from y = −∞ to
−w/2. Solution modes at xa satisfy the biorthogonality conditions (2.22) using these
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boundary-layer inner products. After application of the far-field conditions, we are
then left with

[Û, V̂
†
f ]xb

+ [Û, V̂
†
f ]−

xa
+ [Û, V̂†

f ]+xa
=

∫
V

ŝ · V̂
†
f dV −

∫
S

J(Û, V̂
†
f ) · n dS. (2.27)

We now substitute the decomposition (2.18) and (2.23) into (2.27). The summations
over modes are brought outside of the inner products, resulting in integrands
containing inner products of individual solution modes. At x = xa , the wave
propagation conditions (2.24) imply that no regular/adjoint mode pairs co-exist there.
Biorthogonality (2.22) thus dictates that the inner products of these modes vanish.
Likewise, the inner products at x = xb are all zero except for the one involving the
instability mode pair, which evaluates to am(xb)[φ̂m, φ̂

†
m]. We are then left with a useful

formula for the regular instability mode amplitude,

am(xb) =

∫
V

ŝ · V̂
†
f dV −

∫
S

J(Û, V̂
†
f ) · n dS

[φ̂m, φ̂
†
m]

. (2.28)

The first term in the numerator of (2.28) represents the receptivity to the source
distribution described by ŝ. It is the projection of the source term onto the adjoint
solution, and because of this, each element of the adjoint solution vector corresponds
to excitation by a point source of a given type. For example, take the case of a point
mass source, ŝ = [δ(x − x0) 0 0 0]T . The amplitude of the excited instability wave

is simply ρ̂†(x0)/[φ̂m, φ̂
†
m], or the properly normalized value of the adjoint density

evaluated at the source location. Likewise, the adjoint velocities are related to point
body forces and the adjoint temperature is related to a point volumetric heat source.

By application of homogenous regular solid-wall boundary conditions along with
appropriate solid-wall boundary conditions for the adjoint equations, the integrand
of the solid-surface integral in (2.28) is made to vanish. The inviscid adjoint boundary
condition is analogous to the non-penetration condition for the regular equations,
and is expressed as

û† · n = 0. (2.29)

For viscous flows the adjoint wall boundary conditions involve setting the adjoint
velocity components to zero at the wall and either setting the adjoint temperature
disturbance to zero (for the isothermal wall condition) or setting the wall-normal
adjoint temperature gradient to zero (for the adiabatic wall condition). Note that
we are referring to the temperature disturbance wall boundary conditions; the mean
temperature boundary condition does not affect the choice of adjoint temperature
boundary condition.

Alternatively, the surface boundary integral in (2.28) illustrates how the adjoint
solution and its spatial derivatives on the splitter plate determine the receptivity to
nonhomogeneous wall boundary conditions. Consider an adiabatic wall, where the
adjoint wall boundary conditions for viscous flow are û† = v̂† = 0, ∂T̂ †/∂n = 0.
Unsteady suction/blowing normal to the wall surface is introduced by application of
the boundary condition û · n = v̂b, where v̂b is the amplitude of the applied boundary
velocity. This introduces the following non-zero component to J(Û, V̂

†
f ) · n:

{ J(Û, V̂
†
f ) · n}blowing = v̂b

(
p̂† +

M

Re
τ̂ †
nn

)
. (2.30)
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Source description Adjoint expression for receptivity

Point mass source, ŝρ = δ(x − x0) ρ̂†(x0)

Point body force, ŝui
= δ(x − x0) ûi

†(x0)

Point volumetric heat source, ŝT = δ(x − x0) T̂ †(x0)

Surface normal unsteady blowing, v̂ = v̂bδ(x − x0) v̂b

(
p̂(x0)

† +
M

Re
τ̂ †
nn(x0)

)

Surface unsteady heating, T̂ = T̂bδ(x − x0)
γM

ReP r
µ̄

∂T̂ †

∂n
(x0)T̂b

Table 1. Physical source description and associated adjoint expression for determining
receptivity.

The adjoint terms in (2.30) constitute an adjoint ‘stress’ with an inviscid part given by
the adjoint pressure and a viscous component given by (M/Re)τ̂ †

nn, where τ̂ †
nn is the

adjoint normal viscous stress in the wall normal direction. For an isothermal wall,
the adjoint pressure in (2.30) is replaced by ρ̄ρ̂†. Unsteady heating of the surface
resulting in a surface temperature fluctuation T̂b introduces the following non-zero
contribution to J(Û, V̂

†
f ) · n:

{ J(Û, V̂
†
f ) · n}heating =

γM

Re Pr
µ̄

∂T̂ †

∂n
T̂b. (2.31)

The sensitivity to unsteady wall heating is determined by the wall-normal adjoint
temperature gradient. A summary of the physical source mechanisms, and the
associated adjoint expressions for receptivity, is given in table 1.

Next consider the case where there are no sources near the plate edge, but instead the
excitation comes from an incident disturbance field Û i(x, y) originating far upstream
from the trailing edge and composed of downstream travelling normal modes. This
type of excitation model may be convenient when considering the response to incident
disturbances with a known form, such as trapped waves within the boundary layer
or vortical gusts, rather than to a particular source distribution. In this case, (2.26)
reduces to

am(xb) = −

∫ −w/2

−∞
J(Û i(xa, y), V̂

†
f (xa, y)) · ex dy +

∫ ∞

w/2

J(Û i(xa, y), V̂
†
f (xa, y)) · ex dy

[φ̂m, φ̂
†
m]

.

(2.32)

This gives the triggered instability wave amplitude in terms of inner products of the
adjoint field with the incident field evaluated at some location xa upstream of the
edge. Similarly, for sound generated from far downstream and propagating in the up-
stream direction with incident field Û i(x, y), the instability wave amplitude is given
by

am(xb) = −
[Û i , V̂

†
f ]xb

[φ̂m, φ̂
†
m]

. (2.33)

The adjoint solution also enables prediction of receptivity to acoustic disturbances
originating far from the plate edge and outside any regions of shear. In this case, (2.28)
still holds, and allows for receptivity prediction for any distant source distribution.
However, we must know the adjoint solution far from the edge (at the source location),
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which may involve excessive computational expense using direct methods. In § 3.3,
we show how the radiating part of the adjoint solution may be extended to large
distances using a Kirchhoff surface integral formula, enabling prediction of receptivity
to distant sources.

3. Receptivity of a supersonic mixing layer
3.1. Problem set-up and numerical method

The formulae derived for receptivity prediction based on adjoint solutions require
two pieces of information: (i) a description of the regular instability wave of interest,
and (ii) the relevant adjoint solution. The regular instability wave is now defined as
a convectively unstable eigenmode for the non-parallel mixing layer downstream of
the splitter-plate trailing edge. The details of this solution in the near-edge region
are not required since the amplitude of the mode well downstream of the edge is the
desired quantity. The corresponding adjoint eigenmode completes the biorthogonal
eigenmode pair in the downstream region. The adjoint eigenmode, however, interacts
with the splitter plate to produce a scattered adjoint field; it is this scattered field that
accounts for receptivity via the edge-scattering process. The full adjoint field, denoted
V †

f , is a solution to the adjoint Navier–Stokes equations (2.9)–(2.11). In the present
work, V †

f is obtained by finding a numerical solution to the appropriately discretized
adjoint equations.

Some means of forcing the incident adjoint eigenmode is required for the numerical
solution of the receptivity problem. Invoking the parallel flow assumption and
considering an inviscid fluid, we may reduce the adjoint equations to an ordinary
differential equation for a particular spatial eigenmode. The parallel adjoint instability
mode is obtained from solution of this ODE and is introduced through forcing
applied through a downstream boundary zone. The parallel eigenmode is only an
approximation to the actual non-parallel adjoint instability mode, but its projection
onto the actual mode is relatively large. Other modes present (for the flow conditions
considered) are neutral or damped, so that the adjoint instability wave component
of the solution grows and becomes the dominant ‘incident’ field travelling into the
computational domain.

The computational domain for the adjoint field calculations, including boundary
zones, is shown in figure 3. Numerical damping sponges are applied at the inflow
and upper/lower computational boundaries to provide a radiation condition that
absorbs the outward travelling adjoint waves. These sponge zones are based on the
treatment developed by Israeli & Orszag (1981) and are characterized by a length
L and strength σ . Subscripts si, so, sl and su denote the sponge parameters for
the inflow, outflow, lower and upper sponges, respectively. The numerical scheme
used to compute the required regular and adjoint solutions is described in detail
in Barone (2003). The equations are solved in the frequency domain for a given ω

using a modified five-stage Runge–Kutta scheme along with sixth-order compact finite
differences. Non-trivial trailing-edge geometry, e.g. for a splitter plate of finite width,
is handled by a high-order overset grid methodology. Verification of the numerical
method implementation for problems of acoustic scattering and vortical disturbance
generation is documented in Barone (2003).

The splitter plate consists of a rectangular section of width w capped by a rounded
trailing edge. Numerical experiments with rectangular or half-plane splitter-plate
shapes revealed that the singularities present at sharp corners produce unacceptable
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Figure 3. Schematic of the computational domain for the supersonic mixing-layer problem,
including boundary zones (not to scale).

error levels when applying high-order centred finite-difference schemes. The symptoms
of the numerical difficulties included excitation of odd–even modes at the grid
Nyquist frequency that do not disappear with increasing grid resolution. The rounded
trailing-edge shape, combined with the overset grid scheme outlined in Barone
(2003), guarantees solution continuity and realization of the favourable convergence
properties of the finite-difference scheme.

Solution of the linearized equations of motion requires a steady mean mixing-layer
flow about which the flow is perturbed. The mean flow satisfies the time-independent
form of the full Navier–Stokes equations. The mean flow chosen for the present
study consists of a supersonic lower stream with M1 = 1.2 and a small co-flow with
M2 = 0.1. Many applications that depend on the mixing-layer receptivity mechanism,
such as jet screech and cavity oscillations, occur in the compressible flow regime,
motivating the present selection of a supersonic Mach number. The non-zero co-
flow was chosen to make the upper stream boundary condition unambiguous at
the inflow plane, improving the iterative convergence behaviour of the base flow
solution. The pressure and temperature of the two streams are equal, simulating
conditions occurring in a cold pressure-matched jet. In this study, a laminar base
flow is considered with superposed linear instability waves. We note that the present
analysis could be extended to account for nonlinear instability wave amplitude and
the attendant increase in mixing-layer growth rate by appropriate modification of the
base flow.

All lengths are non-dimensionalized by the lower stream inflow boundary-layer
momentum thickness θ∗

1 . The numerical technique used to find the mean flow solution
is very similar to the method outlined for the adjoint solutions. In this case, the
inflow sponge is used to fix the boundary-layer flow on either side of the plate,
with the sponge reference solution constructed from solutions of the compressible
boundary-layer equations with zero pressure gradient. The method of solution for the
boundary-layer equations is described in Low (1953).
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Figure 4. Close-up view of a typical near-edge overset grid configuration.

The chosen edge shape is a super-ellipse, which is described by the equation(
2y

w

)2

+

(
1 +

x

AR

)m

= 1, −AR � x � 0, (3.1)

y = ± 1
2
w, x < −AR, (3.2)

where AR is the aspect ratio and m determines the level of continuity of the shape at
x = −AR. Here we use AR = 2.5 and m = 6, which gives a relatively blunt trailing
edge with a level of shape continuity consistent with the accuracy of the numerical
scheme. A close-up view of the rounded edge along with a typical computational mesh
structure near the edge is shown in figure 4. The plate width is chosen to be twice
the boundary-layer momentum thickness θ1, and the upper stream boundary layer
has thickness θ2 = θ1. The Reynolds number based on θ∗

1 and the lower free-stream
conditions is Reθ∗

1
= 250.

The character of the flow in the vicinity of the blunt trailing edge depends on the
chosen geometry and flow parameters. Over some range of the parameters w, ū2/ū1

and Reθ∗
1
, a global instability mode will be present, resulting in vortex-shedding in the

wake behind the trailing edge. Although this phenomenon is interesting in its own
right, we are focused primarily on the generation of convective instabilities in the
mixing layer, independent of such vortex-shedding modes. For the flow conditions used
in the present study, the near-edge flow does not possess an unstable vortex-shedding
mode in the absence of a sustained excitation. This was verified by performing a
numerical experiment where a pressure pulse was placed near the edge in the steady
flow, setting up an initial-value problem. The full Navier–Stokes equations were then
integrated for a long period of time during which the flow response near the edge
was recorded. The pulse excited instabilities in the mixing layer that convected away
from the edge, but oscillations near the edge were subsequently damped over time.

The required computational domain size is dictated by the largest length scales
present in the problem, namely the acoustic wavelength λa = 2π/ω, and the instability
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Case Lx Ly Lte Lsi Lso σsi σso

Mean1 560 400 229.5 120.9 228.1 2.0 0.5
Mean2 1050 750 382.5 234.5 500.0 2.0 0.1

Table 2. Domain sizes and sponge zone parameters for the supersonic mixing-layer mean
flow solutions. Refer to figure 3 for domain and sponge zone length definitions.

Case Nx Ny Nr Ns �xmin �ymin H �rmin �smin

Mean1 700 300 40 600 0.085 0.105 4.0 0.06 0.057
Mean2 864 512 48 1120 0.117 0.105 4.0 0.06 0.057

Table 3. Grid parameters for the supersonic mixing-layer calculations.

wavelength λi = 2π/αr . At lower frequencies, a larger domain is required to
accommodate the longer waves that populate the solution space; lower frequency
leads to a computationally more expensive problem, as the near-edge region must
remain well-resolved as the domain is expanded. We obtained two steady mean flow
solutions, one for higher-frequency disturbance solutions and another on a larger
domain for lower frequencies. The domain sizes and boundary zone parameters are
given in table 2, while the relevant grid parameters are given in table 3. The Cartesian
grid is composed of Nx and Ny points in the x and y directions, respectively, with non-
uniform grid spacings �x and �y to allow for clustering of points near the trailing
edge and within regions of shear. The overset grid, which extends to a constant
distance H from the splitter plate, contains Nr points in the wall-normal direction
and Ns points in the tangential direction. The overset grid also contains non-uniform
grid spacings �r and �s, with clustering of points near the trailing edge.

We now describe the characteristics of the mean flow obtained on the smaller
domain. Results given in the rest of this section are non-dimensionalized using
the lower stream boundary-layer momentum thickness at x = −AR, where the
flat plate joins with the super-ellipse trailing edge. This thickness, denoted θ∗

e , is a
more appropriate length scale for describing the stability properties of the mixing
layer. Its use as a scaling parameter is explicitly noted where it is applied, usually
in the form of the ratio θe = θ∗

e /θ∗
1 . Figure 5 shows steady streamwise velocity

profiles at three locations downstream of the splitter-plate edge. The profile just
downstream of the edge is a severely asymmetric wake; further downstream the wake
component ‘mixes out’ and the profile approximates a single-inflection-point mixing
layer. Inviscid spatial linear stability theory can be used to approximate the expected
bandwidth of convectively unstable frequencies supported by the mixing layer, as well
as the degree of non-parallelism present. The analysis assumes a locally parallel flow
and disturbances that behave like exp(i(ωt − αx)). Note that the presented parallel
stability results are probably not good approximations to the local growth rates of
actual instability mode disturbances supported by the flow; rather, they are shown
to illustrate the degree of non-parallelism present and to provide a rough estimate of
expected growth rates sufficiently far downstream from the edge. Figure 6(a) shows
the non-dimensional spatial instability growth rate αiθe plotted versus real angular
frequency ωθe at several, nearly equally spaced, streamwise stations. Figure 6(b) shows
the instability growth rate for ωθe = 0.0815. Both figures indicate that the stability
characteristics of the steady flow profiles change rather quickly near the edge, with
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Figure 5. Streamwise base flow velocity profiles for three streamwise locations.
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Figure 6. (a) Local instability wave growth rates based on the parallel flow approximation.
x/θe = {1 → 2.2, 2 → 22.5, 3 → 41.8, 4 → 61.6, 5 → 80.5, 6 → 99.3} (b) Local instability
wave growth rate downstream of the splitter plate edge for ωθe = 0.0815.

significant non-parallelism, while downstream of x/θe = 40 or so, the flow is only
weakly non-parallel.

Figure 7(a) depicts velocity vectors of the steady field very near the trailing edge,
revealing a stagnation point close to the lower surface of the plate, and no obvious
recirculation regions. The asymptotic solution found by Peake (1994) for a steady
supersonic shear-layer flow past a semi-infinite plane (with stagnant upper stream)
demonstrated that the region very close to the trailing edge is governed by the full
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Figure 7. (a) Base flow velocity vectors near the splitter plate edge. (b) Behaviour of the
mixing layer dividing streamline (solid line), compared to y ∼ x1/3 (dashed line). y0 is the
dividing streamline coordinate at x = 0.

Navier–Stokes equations, but that further away from the edge there exists a viscous
wake region governed by an asymptotic solution valid for large x. One relatively
simple way to compare the present computation with the predictions of the viscous
theory is to examine the dividing streamline. The theory predicts a steady wake
streamline shape which asymptotes to y ∼ x1/3 sufficiently far downstream of the
edge. Figure 7(b) compares the dividing streamline from the present computation
with the x1/3 limit. The comparison is favourable despite the presence of the finite-
width edge and small co-flow in the computation. The division of the dividing
streamline behaviour into ‘inner’ and ‘outer’ regions suggests a way of separating the
near-edge mean flow region from the slowly developing region; the transition point
for asymptotic behaviour appears to occur at x/θe = 20 or so.

3.2. Adjoint calculation results

In this section, we examine adjoint solutions for the supersonic splitter plate mixing-
layer flow, seeking insight into the relative effectiveness of excitation by different
source types and source locations, as well as identification and characterization of
receptivity mechanisms.

Calculation verification

In order to examine the adjoint solutions with confidence, we must first verify the
method derived for receptivity prediction in § 2.4 along with the numerical methods
used to calculate the adjoint solution. This is easily done by computing a numerical
solution to the forced LNS equations, then predicting the amplitude of the instability
wave using the known source distribution and the adjoint solution and comparing the
answers. If the numerical method is accurate for both the regular forced problem and
the adjoint problem, and if (2.28) holds, then the amplitude of the excited instability
wave should be predicted well by the adjoint solution.

Two such validation cases are presented here for the supersonic mixing layer.
The first case involves excitation by a streamwise momentum source given by
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Figure 8. (a) Contours of Real (p̂) for a streamwise momentum source (marked by a black
dot) placed in the lower stream boundary layer at (x, y) = (−37.5, −3.5). There are 16 equally
spaced contours over the range −0.5 to 0.5. (b) |û| along y = −3. —, computed solution. – – –,
prediction based on the adjoint solution.

ρ̄ŝu = f (x, y), where f (x, y) is the two-dimensional Gaussian shape function

f (x, y) =
1

2πσxσy

exp

(
−1

2

[(
x − x0

σx

)2

+

(
y − y0

σy

)2
])

. (3.3)

The source is placed within the lower stream boundary layer at (x0, y0) = (−37.5, −3.5)
with σx = 1.0, σy = 0.25, so that the source region is elongated in the x direction.
The excitation frequency is ω = 0.08. Figure 8(a) shows contours of Real(p̂) obtained
by numerical solution of the LNS equations in the frequency domain. Disturbances
excited within the boundary layer propagate downstream to the trailing edge, where
they transfer energy to the instability wave, which dominates the downstream field.
Figure 8(b) shows the magnitude of the streamwise velocity perturbation near the
centre of the mixing layer at y = −3 plotted versus streamwise distance from the trai-
ling edge. The solid line is from the LNS calculation. The dashed line is the prediction
for instability wave amplitude obtained using the adjoint solution in the following
manner.

In order to compare direct solutions with the present receptivity predictions over
the entire region x > 0, it is useful to construct the entire unstable mode of interest,
even near the trailing edge. For a weakly non-parallel flow, this may be obtained
by an appropriate linear stability analysis of the steady base flow. This could be
done using non-parallel stability theory or by finding a solution to the parabolized
stability equations (PSE) downstream of the edge. For the present case, we compute an
approximate unstable mode solution where the unstable wave component is expected
to dominate for most of the region x > 0. This ‘reference solution’ is calculated by
placing a momentum source oriented in the y direction (a dipole) near the plate
edge. The instability wave component of the reference solution dominates the field
downstream of the edge except for very close to the edge. The reference solution serves
as the ‘eigenmode’ which is then normalized by the adjoint field using (2.28), giving
the dashed line prediction for instability wave amplitude downstream of the edge.
Note that knowledge of the unstable mode of interest for all x > 0 is not required
to perform a receptivity analysis using the present methods; only the behaviour for
large x is required. The reference solution is introduced here only for validation and
illustrative purposes.
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Figure 9. (a) Contours of Real(p̂) for a heat source (marked by a black dot) placed above
the splitter plate at (x, y) = (−49.5, 15). There are 16 equally spaced contours over the range
−0.01 to 0.01. (b) |û| along y = −3. —, computed solution. – – –, prediction based on the
adjoint solution.

The volume integral in (2.28) is evaluated using the trapezoidal rule applied to
adjoint solution data stored at grid points. The inner product [φ̂, φ̂

†
] is evaluated at

the downstream edge of the physical portion of the computational domain. Figure 8
shows very good agreement between the direct calculation and the adjoint prediction.
Note that the directly computed solution contains all solution modes, including
damped and neutral modes. Therefore, the directly computed field deviates from the
normalized instability eigenmode in the near-edge region where the eigenmode is not
dominant. It is clear from comparisons further downstream, where the instability wave
overwhelms other solution components, that the amplitude of the excited instability
wave is correctly predicted.

Figure 9 shows results for the second test case, where a heat source oscillating at
frequency ω = 0.08 is placed above the plate. The prescribed source distribution is
ŝT = (1/γ )f (x, y) with f given above, and with (x0, y0) = (−49.5, 15) and σx = σy =
2.5. The generated acoustic waves scatter at the trailing edge and excite the instability
wave. The adjoint prediction again gives the proper instability wave amplitude to high
precision. These results give confidence in the assumptions applied in the derivation
of (2.28), including application of biorthogonality to a non-parallel flow. The accuracy
of the receptivity prediction demonstrates that the adjoint field is sufficiently resolved
and the numerical solutions satisfy the continuous Euler–Lagrange identity (2.6) to a
high degree of accuracy.

The adjoint near field

Having established that the adjoint solution adequately defines the sensitivity of
the mixing layer to external forcing, we may now examine the details of the adjoint
solution itself. A series of adjoint computations were performed for the supersonic
mixing layer where the excitation frequency was varied across the unstable range.
The computational parameters for this study are presented in table 4.

Contours of the modulus of the adjoint field for ω = 0.04 are plotted on a
logarithmic scale in figures 10 and 11. Each adjoint field component is normalized by
the maximum modulus of that component found in the computational domain. The
adjoint field in the mixing-layer region is dominated by the forced adjoint instability
wave, which grows exponentially in the upstream direction. Upon impinging on
the splitter-plate edge the adjoint instability wave scatters, creating a complicated
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ω Mean flow Lsi Lso Lsl Lsu σsi σso σsl σsu

0.04 Mean2 234.5 500.0 169.3 169.3 0.4 3.0 0.4 0.4
0.06 Mean2 234.5 500.0 169.3 169.3 0.4 3.0 0.4 0.4
0.08 Mean1 120.9 228.1 98.6 98.6 0.4 3.0 0.2 0.2
0.10 Mean1 120.9 228.1 98.6 98.6 0.4 3.0 0.4 0.4
0.12 Mean1 120.9 228.1 98.6 98.6 0.4 3.0 0.4 0.4

Table 4. Boundary-zone parameters for the supersonic mixing-layer adjoint calculations.
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Figure 10. Modulus of the adjoint streamwise velocity and adjoint transverse velocity field
for the supersonic mixing layer, ω = 0.04.
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Figure 11. Modulus of the adjoint density and adjoint temperature field for the supersonic
mixing layer, ω = 0.04.

total field resulting from the superposition of the incident and scattered fields. The
adjoint field within the lower (supersonic) stream boundary layer remains quite strong,
decaying away from the boundary layer; this is not obvious in the figure due to the
resolution of the plots, but this region is examined in detail later in this section.
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Figure 12. As figure 10 but for ω = 0.08.
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Figure 13. As figure 11 but for ω = 0.08.

Away from the areas of mean shear are regions of very low receptivity, or nodes, in
the adjoint field. The number and location of the nodes depends on the adjoint field
variable, and thus on the source type. We will comment more on the physical reason
for the presence of these receptivity nodes later in this section. The scattered adjoint
field also presents a distinct directivity pattern related to the receptivity to acoustic
waves that scatter at the trailing edge. The nature of the directivity depends on source
type, but a feature common to all source types is the alignment of contours along
adjoint Mach lines (which are oriented at the usual Mach angle for the reversed mean
flow) within the supersonic flow at large x. This part of the adjoint field is relatively
weak, and represents the acoustic receptivity path originating from an acoustic source
placed in the supersonic stream. Sound radiated from the source propagates across
the mixing layer, then travels upstream on the subsonic side of the mixing layer and
arrives at the trailing edge where it triggers the instability wave.

Figures 12, 13, 14 and 15 show the modulus of the adjoint field components for
ω = 0.08 and ω = 0.12. The scattering patterns observed over the unstable frequency
range are qualitively similar, although the number and location of receptivity
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Figure 14. As figure 10 but for ω = 0.12.
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Figure 15. As figure 11 but for ω = 0.12.

nodes vary with the frequency. The nodes downstream of the mixing layer become
more aligned with the flow direction as frequency is increased. Their spacing also
decreases as frequency increases, a consequence of the shrinking length scales of the
problem.

Receptivity to acoustic waves may be further characterized by constructing near-
field directivity plots of the adjoint field away from y = 0. Figure 16 shows the
modulus of the adjoint field for ω = 0.08 at a constant distance r = 1.25λa from
the trailing edge, where λa ≡ 2π/ω is the acoustic length scale. Data in the direct
receptivity regions (regions of shear) are not displayed in the directivity plots, as
their magnitude becomes much larger than values away from those regions. Above
the plate, where only the small co-flow is present, streamwise momentum sources are
more effective at exciting the mixing layer when placed in the upstream direction,
while transverse forcing is most effective at θ = 120◦. This is consistent with the
directivity of dipole radiation observed for such sources in still air. The adjoint
density and temperature correspond to monopole-like sources, whose effectiveness is
seen to increase with θ above the plate. Note that in a uniform flow ρ̂†/T̂ † = const.,
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Figure 16. Directivity plots of the scattered adjoint field at r/λa = 1.25 for ω = 0.08.

(a) |û†|. (b) |v̂†|. (c) |ρ̂†|. (d) |T̂ †|.

which explains the exact similarity between figures 16(c) and 16(d). Below the plate,
a lobe of relatively strong receptivity for all source types is associated with a Mach
line that intersects the trailing edge, with the adjoint streamwise velocity exhibiting a
narrow peak relative to the behaviour of the other adjoint variables in that region.
The directivity pattern for ω = 0.12 is displayed in figure 17. The patterns are similar
to the ω = 0.08 case, but of note is the pronounced double lobe pattern in the
supersonic stream associated with the elongated receptivity node visible in figures 14
and 15. The near-field directivity plots for ω = 0.04, ω = 0.06 and ω = 0.10 are
not shown here, but they demonstrate that the directivity pattern is a weak function
of frequency, while the preferred angular source position for excitation is essentially
independent of frequency. For example, the receptivity to mass sources is shown to
be maximum as θ nears the upper side boundary layer at 180◦ for both ω = 0.08 and
ω = 0.12, as figures 16(c) and 17(c) indicate. However, the receptivity for ω = 0.08
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Figure 17. Directivity plots of the scattered adjoint field at r/λa = 1.25 for ω = 0.12.

(a) |û†|. (b) |v̂†|. (c) |ρ̂†|. (d) |T̂ †|.

just outside the upper boundary layer is about four times stronger than at θ = 30◦,
while for ω = 0.12 the ratio is closer to 2.75.

The appearance of the receptivity nodes apparent in the contour plots of the
adjoint fields prompted further analysis using the following test case. A compact
momentum force, approximating a point source with frequency ω = 0.08, was placed
at (x0, y0) = (27.5, 13), a location coincident with a node in the adjoint field. The
response to this forcing was calculated by numerically solving the LNS equations.
The source was then moved slightly downstream to (x0, y0) = (38.5, 13), a location
away from any receptivity nodes. The calculated pressure disturbance responses are
shown for the two cases in figure 18, along with the adjoint receptivity predictions
in figure 19. The results verify the adjoint predictions, suggesting that the receptivity
nodes are real and must have a physical explanation. The presence of the nodes is
explained by first noting that instability waves may be directly excited by a source,
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Figure 18. Contours of Real(p̂) for a streamwise momentum source centred at (a) (x0, y0) =
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solution.

or excited when acoustic (or hydrodynamic) waves generated by the source scatter
at the trailing edge. The adjoint field is comprised of a superposition of an incident
instability wave field with a scattered field. The incident adjoint field is associated with
direct receptivity, whereas the scattered adjoint field corresponds to receptivity via
the trailing-edge scattering process. A receptivity node occurs when both mechanisms
are present, each exciting an instability wave of the same magnitude, but of opposite
phase, so that the sum of the two excited waves results in cancellation.

A simple model that emulates this process is constructed by taking a parallel adjoint
instability mode and adding to it the field from an adjoint monopole source centred
at the origin, simulating the edge-scattered field. The resulting adjoint density field
for ω = 0.08 is pictured in figure 20 and compared to the actual calculated field. The
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Figure 20. (a) Contours of log10 |ρ̂†| for ω = 0.08. (b) The adjoint density modulus modeled
by the superposition of an instability eigenmode with an acoustic monopole field.

interference pattern is qualitatively reproduced above the plate where the mean flow is
small, while below the plate the presence of the supersonic flow modifies the scattered
adjoint field from a monopole distribution, and thus alters the node locations.

Predictions of this sort prove useful for interpretation of experimental results
reported by Ahuja (1985). It was found that sources placed close to a jet shear layer
could excite disturbances which apparently did not originate close to the jet nozzle
lip, but rather further downstream near the source location. Results of this type,
when interpreted alongside ‘continuous coupling’ theories for direct receptivity (Tam
1978; Tam & Block 1978), sparked some controversy regarding the importance of
the trailing edge (Ahuja & Tam 1982). The present results conclusively support the
validity of both receptivity mechanisms. The curve formed by tracing the locus of
nodes in the adjoint field indicates a surface along which the trailing-edge scattering
and direct receptivity mechanisms are equally effective. The fact that an acoustic
scattering mechanism accounts for the nodes appearing in the downstream direction
also implies that the finite thickness of the splitter plate has a significant effect on
the receptivity of sources placed downstream. The vortex sheet model for receptivity,
which involves a splitter plate of zero thickness, predicts exponential decay of the
receptivity with increasing streamwise source location downstream of the trailing
edge (Kerschen 1996). The finite-width plate thus enhances scattering of downstream-
originating sound into instability waves at the trailing edge. Although we consider
only the pressure-matched mixing layer in this work, this observation is consistent
with the experimental work of Ponton & Seiner (1992), who found that jet screech
tones could be enhanced by increasing the jet nozzle lip thickness.

3.2.1. The lower stream boundary layer

We now focus attention on the adjoint field within the supersonic boundary layer
present on the lower edge of the plate. The adjoint instability wave does not exist
upstream of the trailing edge, where there is no inflectional velocity profile that
can support an inviscid instability. However, a significant portion of the ‘adjoint
energy’ appears to be scattered into disturbances that persist in the lower stream
boundary layer and propagate upstream. Figure 21 shows profiles of the modulus
of the adjoint field within the lower stream boundary layer some distance upstream
of the trailing edge for ω = 0.08. These profile shapes are representative of the
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adjoint boundary–layer profiles observed for all frequencies considered. They are
reminiscent of the adjoint Tollmien–Schlichting (T-S) eigenmode shapes reported
by Hill (1995). The linear stability calculations of Mack (1984) indicate that for a
boundary layer at M = 1.6 and Reynolds number Reθ∗

1
= 250, unstable modes can

exist for 0.7 × 104 � ω∗ν∗/U ∗2

1 � 1.6 × 104. The lowest frequency considered here,
ω = 0.04, corresponds to ω∗ν∗/U ∗2

1 = 1.9 × 104. It appears, then, that the frequency
band for unstable T-S waves in the boundary layer coincides with a portion of the
Kelvin–Helmholtz unstable frequency band that lies slightly below ω = 0.04.

Figure 22 shows the maximum modulus (for a given x) of the adjoint boundary-
layer field plotted versus streamwise distance from the trailing edge for four different
frequencies. At each frequency, there exists a near-edge region with complicated
adjoint field variation, where growth or decay of the adjoint modulus depends on
the component of the solution and the frequency. The length of this region decreases
with frequency until, for ω = 0.12, monotonic decay away from the trailing edge
of all adjoint components occurs. Outside of the near-edge region, the adjoint fields
decay at a rate that is proportional to the frequency. It is likely that the solution in
the boundary layer is comprised of one or more stable adjoint eigenmodes, which are
associated with corresponding regular stable eigenmodes. Excitation and subsequent
convection past the trailing edge of one of these regular modes provides a receptivity
path for triggering the mixing layer instability mode, a fact which could prove useful in
the shear flow control setting. In fact, Zaman & Hussain (1981) found that instability
waves within an initially laminar jet shear layer could be effectively excited by placing
an oscillating ribbon within the upstream boundary layer.

Figure 22(a) indicates that the point of maximum receptivity for mass and heat
sources oscillating at ω = 0.04 is located some distance upstream of the trailing
edge. This boundary-layer/mixing-layer coupling mechanism may help to explain the
‘anomalous’ results of Parekh, Cain & Vaporean (1997), who found that a fluidic
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Figure 22. Maximum modulus of the adjoint field within the supersonic boundary layer as
a function of streamwise coordinate along the splitter plate. (a) ω = 0.04. (b) ω = 0.06.
(c) ω = 0.08. (d) ω = 0.10.

wall actuator placed further upstream within a jet nozzle was more effective than one
placed closer to the nozzle exit.

3.3. Far-field extension of the adjoint solution

For certain flow configurations, one may be interested in the instability waves
generated by acoustic excitation sources placed far from the edge, outside any regions
of shear. Equation (2.28) certainly holds for such situations, but still requires the
adjoint solution in the source region. This may pose practical problems for sources
located far from the edge, as the computational domain required to directly obtain
far-field adjoint solutions may become very large. A method for extracting the distant
adjoint field from the solution in a computational domain of limited extent is therefore
required.

The radiated adjoint solution may be found in an efficient manner using an open
Kirchhoff surface. Kirchhoff surfaces have been successfully employed in many recent
computational studies where a computed acoustic near field is extended to the far
field (Lyrintzis 1995). A Kirchhoff integral formula relates the value of an acoustic
field variable to an integral calculated over a surface completely enclosing the acoustic
source region. In the present case, the Kirchhoff surface is oriented parallel to the
flow direction and placed in the slow stream, allowing extension of the field above
the plate. The surface is located a distance from the mixing layer such that outside
of the surface the mean flow is uniform with Mach number M , and so the adjoint
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density satisfies the reduced convective wave equation[
(1 − M2)

∂2

∂x2
+

∂2

∂y2
+ 2ikM

∂

∂x
+ k2

]
ρ̂† = 0, (3.4)

with exp (−iωt) time-dependence and with k = ω/c. This equation has the same form
as the regular convective wave equation, a consequence of self-adjointness in the
uniform flow region.

We now consider approximation of the radiated adjoint field above the plate, where
the mean flow is assumed to be subsonic. The following Prandtl–Glauert variables
are introduced

x́ =
x√

1 − M2
, ý = y, ḱ =

k√
1 − M2

, ρ́ = ρ̂
† exp (ikMx/(1 − M2)), (3.5)

which transforms (3.4) to the Helmholtz equation(
∂2

∂x́2
+

∂2

∂ý2
+ ḱ2

)
ρ́ = 0. (3.6)

The traditional Kirchhoff integral formula (see Pierce 1989, p. 181) relating a radiating
solution to (3.6) at a point x́ to an integral over the surface ∂Ωk enclosing the source
region is

ρ́(x́) =

∫
∂Ωk

[
ρ́( ý)

∂G

∂n
( ý|x́) − G( ý|x́)

∂ρ́

∂n
( ý)

]
dS( ý), (3.7)

where ∂/∂n is the derivative in the direction of the outward pointing normal of the
Kirchhoff surface n, and G is the free-space Green’s function for (3.6)

G(x́| ý) =
1

4i
H

(2)
0 (ḱ |x́ − ý|). (3.8)

Note that the Green’s function satisfies the radiation condition, which dictates that
only outward travelling waves exist for |x| → ∞ as the field evolves backward in time.
For (3.7) to hold exactly, the Kirchhoff surface ∂Ωk must be closed and placed entirely
in a region of the flow field which is governed by (3.6). In the present application,
we use an open Kirchhoff surface consisting of all points along a line y = h, which
terminates some distance upstream and downstream of the primary source region;
thus (3.7) is used as an approximation rather than an exact relation.

Aside from the truncation error present in the near-field numerical solution, there
are two main potential sources of error present when using the Kirchhoff surface
technique in this fashion. The first is that the Kirchhoff surface is not closed. This
error will be small provided the integration surface intersects a line connecting the
source and the observer locations and kLk � 1, where Lk is the length of the Kirchhoff
surface. In this case, asymptotic correction terms may be used to reduce this source
of error (Freund, Lele & Moin 1996). Any use of open Kirchhoff surfaces must be
carefully validated to ensure that this error component is sufficiently small. The second
source of error stems from the assumption that the Kirchhoff surface is parallel to
the mean flow. In practice, the mean mixing-layer solutions contain a small transverse
velocity component due to entrainment and flow expansion in the supersonic region.
In the cases investigated, the maximum mean flow Mach number normal to the
Kirchhoff surface is less than 0.01, introducing negligible error.



Receptivity of the compressible mixing layer 331

40 60 80 100 120 140
0

5

10

15

20

25

uncorrected

with asymptotic corrections

θ (deg.)

ˆ
P

er
ce

nt
 e

rr
or

 in
 |ρ

† |

Figure 23. Relative error in adjoint density magnitude for the Kirchhoff prediction test
problem, r/λ = 45, k = 4.25, Lk = 4, h = 0.3025.

3.4. Kirchhoff surface model problem and results

The error resulting from truncation of the Kirchhoff surface is now investigated
by considering the following model problem. A stationary monopole source with
k = 4.25 is placed in a uniform mean flow with M = 0.1. The source is located at
(x0, y0) = (0, 0) and we assume a computational domain in the range −2 � x � 2
such that a Kirchhoff surface with length Lk = 4 may be placed above the source
at a height h = 0.3025. This choice of parameters gives kLk = 17 and kh = 1.29,
which is typical of the parameters used to extend the mixing-layer adjoint solutions.
The adjoint density and its gradient on the Kirchhoff surface are prescribed using the
exact solution for a monopole source. The solution is computed from the Kirchhoff
integral relation along a circular arc of radius r extending from θ = 40◦ to θ = 140◦

and compared with the exact solution. Kirchhoff integral predictions are presented
with and without the open surface asymptotic corrections of Freund et al. (1996).

Figure 23 shows the prediction error in the adjoint density amplitude versus observer
angle θ for r/λa = 50, where λa = 2π/k. Without the correction terms, the error is
quite large for this choice of parameters and is deemed unacceptable for the present
application. With the correction terms, the error is less than 5 % for 45◦ � θ � 135◦.
For the present calculations, the Kirchhoff integral results give suitable data for
assessing trends, if not precise numerical answers.

Figure 24 shows the modulus of the adjoint density extended to r/λa = 50 above
the splitter plate using the calculated mixing-layer adjoint fields and a Kirchhoff
surface. The Kirchhoff surface for each frequency was placed at a height above the
mixing layer such that the relative error estimates from the model problem were less
than 5 % over the range of angles displayed. The extended adjoint field is normalized
by the maximum adjoint density modulus present in the field for the given frequency,
so that the data in the figure represent the ratio of the receptivity via acoustic wave
scattering to the near-edge direct receptivity for a mass source placed at the most
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sensitive location in the field. A low-frequency asymptote is apparent, and is consistent
with the result from vortex-sheet theory with M2 = 0 (Kerschen 1996). The relative
acoustic receptivity decreases at higher frequencies, suggesting that the edge-scattering
mechanism becomes less efficient as frequency increases outside the range of validity
where an unsteady Kutta condition is obeyed (Crighton & Leppington 1974; Bechert
1988). The low-frequency regime in this case extends almost to the most unstable
frequency of the downstream mixing layer, ω = 0.08. Further, the receptivity to
distant sources is apparently more sensitive to angular position of the source at the
lower frequencies, while dependence on θ near the frequency for neutral stability is
quite weak.

4. Summary and conclusions
A framework for receptivity prediction in compressible free shear flows was

developed using the adjoint equation approach. The adjoint equation solutions
are a direct measure of the receptivity of the flow to point source excitation of
various types, and may be used to compute instability wave response to distributed
sources as well. The methodology for adjoint receptivity prediction and the numerical
techniques used to solve for the adjoint field were verified by comparing the adjoint
predictions to regular linearized Navier–Stokes calculations of an excited mixing
layer. Adjoint solutions were then obtained in the frequency domain for a mixing
layer with M1 = 1.2 at several frequencies spanning the frequency range containing
unstable Kelvin–Helmholtz modes. The adjoint fields at all frequencies contain nodes
of low receptivity that result from the interference of the incident adjoint instability
mode with the edge-scattered adjoint field. We gave a physical interpretation of this
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phenomenon and proposed a simple superposition model to explain the interference
pattern.

Examination of the scattered adjoint field revealed zones of relatively high and
low receptivity as a function of the source type and its angle measured from the
downstream mixing layer. The presence of a strong adjoint field within the fast-
stream boundary layer below the plate, particularly for lower frequency, indicated
a receptivity mechanism that couples boundary-layer modes to the mixing-layer
instability mode. Finally, we demonstrated how a Kirchhoff surface can be used
to extend the scattered acoustic adjoint field to large distances, effectively giving
the receptivity to incident acoustic plane wave excitation. Receptivity by acoustic
scattering was shown to be more efficient relative to direct excitation of the mixing
layer by a mass source as the frequency is lowered.
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Sandia National Laboratories. Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company for the United States Department
of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

Appendix. Linearized Navier–Stokes definitions
The linear viscous stress tensor appearing in (2.2) and (2.3) is given by

τ̃ik = µ̄

(
∂ũi

∂xk

+
∂ũk

∂xi

)
+ µ̃

(
∂ūi

∂xk

+
∂ūk

∂xi

)
+

(
λ̄
∂ũj

∂xj

+ λ̃
∂ūj

∂xj

)
δik. (A 1)

The heat flux vector appearing in (2.3) is given by the Fourier law

q̃k = −k̄
∂T̃

∂xk

− k̃
∂T̄

∂xk

. (A 2)

The linear dissipation term appearing in (2.3) is given by

Φ̃ = 2µ̄
∂ūi

∂xk

(
∂ũi

∂xk

+
∂ũk

∂xi

)
+ µ̃

∂ūi

∂xk

(
∂ūi

∂xk

+
∂ūk

∂xi

)
+ 2λ̄

∂ūi

∂xi

∂ũk

∂xk

+ λ̃

(
∂ūk

∂xk

)2

. (A 3)

The linearized form of the ideal gas law is

p̃ =
γ − 1

γ
(ρ̄T̃ + T̄ ρ̃). (A 4)
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